400 028 6601

建站动态

根据您的个性需求进行定制 先人一步 抢占小程序红利时代

TensorFlow发布其新更新TensorFlow2.4.0-rc4的示例分析

这期内容当中小编将会给大家带来有关TensorFlow发布其新更新TensorFlow 2.4.0-rc4的示例分析,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。

成都创新互联公司是专业的彭山网站建设公司,彭山接单;提供网站制作、成都网站制作,网页设计,网站设计,建网站,PHP网站建设等专业做网站服务;采用PHP框架,可快速的进行彭山网站开发网页制作和功能扩展;专业做搜索引擎喜爱的网站,专业的做网站团队,希望更多企业前来合作!

TensorFlow最近发布了其新更新TensorFlow 2.4.0-rc4。TensorFlow Profiler现在支持对MultiWorkerMirroredStrategy 进行概要分析,该概要文件现在是一个稳定的API,并使用采样模式API跟踪多个工作进程。该策略可在多个可能具有多个GPU的工人之间进行同步分布式训练。一些重大的改进涉及处理同级失败和许多错误修复,这些错误修复可以在Keras的多员工训练中找到 。Keras Functional API内部的主要重构已完成。它提高了构建功能模型的可靠性,稳定性和性能。该更新还增加了对TensorFloat-32的支持在基于Ampere的GPU上。TensorFloat-32(TF32)是基于NVIDIA Ampere的GPU的数学模型,默认情况下启用。

重大变化

TF核心:

由于TensorFloat-32的缘故,一些float32运算在基于Ampere的GPU上运行时的精度较低,包括matmul和卷积 。例如,此类运算的输入从23位精度舍入到10位精度。在某些情况下,TensorFloat-32也可用于complex64 ops。因此现在可以禁用TensorFloat-32。

删除了许多不相关的API函数,例如C中用于字符串访问/修改的C-API函数。不属于TensorFlow公共API的模块被隐藏。

tf.keras:

现在 steps_per_execution 参数在compile()中稳定。它有助于在单个tf.function 调用中运行多个批处理 ,从而可以提高TPU或具有较大Python开销的小型模型的性能。Keras Functional API的内部结构已经进行了 重大重构。这种重构可能会影响依赖于某些内部细节的代码。

tf.data:

现在,tf.data.experimental.service.DispatchServer 和 tf.data.experimental.service.WorkerServer使用配置元组代替单个参数。可以分别使用 tf.data.experimental.service.DispatchServer(dispatcher_config) 和 tf.data.experimental.service.WorkerServer(worker_config) 完成此操作。这有助于同时处理多个参数。

tf.distribute:

在最新更新中,各种内置API均使用新功能进行了重命名。

错误修复和其他更改

总体而言,TensorFlow的新功能非常必要,因为它添加了必要的元素以增强性能并删除不相关的元素。引入的改进将有助于开发更可靠和改进的ML模型。

上述就是小编为大家分享的TensorFlow发布其新更新TensorFlow 2.4.0-rc4的示例分析了,如果刚好有类似的疑惑,不妨参照上述分析进行理解。如果想知道更多相关知识,欢迎关注创新互联行业资讯频道。


当前题目:TensorFlow发布其新更新TensorFlow2.4.0-rc4的示例分析
标题来源:http://mbwzsj.com/article/jhppdo.html

其他资讯

让你的专属顾问为你服务