400 028 6601

建站动态

根据您的个性需求进行定制 先人一步 抢占小程序红利时代

U-Net卷积神经网络在生物图像分割上的应用简单易懂笔记-创新互联

U-Net: Convolutional Networks for Biomedical Image Segmentation

在这里插入图片描述
(本人才疏学浅,如有错误欢迎指正)
论文地址:https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/

成都网站建设公司更懂你!成都创新互联只做搜索引擎喜欢的网站!成都网站制作前台采用搜索引擎认可的DIV+CSS架构,全站HTML静态,H5高端网站建设+CSS3网站,提供:网站建设,微信开发,成都微信小程序,商城网站建设成都app开发主机域名,服务器租售,网站代托管运营,微信公众号代托管运营。1 摘要 卷积神经网络在生物图像分割上的应用 用于解决的问题:

一般来说成功训练深度网络需要数千个带注释的训练样本,但在生物医学任务中,成千上万的训练图像通常是遥不可及的。这篇文章提出了一种网络和训练策略,它依赖于数据扩充的强大使用,以更有效地使用可用的带注释的样本。该体系结构由捕获上下文的收缩路径和支持精确定位的对称扩展路径组成。这样的网络可以从非常少的图像中端到端地训练。

2 引言 卷积网络+生物医学图像处理需要解决的两个问题本文网络介绍3 网络结构

它由收缩路径和扩张路径组成。

4 训练
  1. 网络训练过程
    使用输入图像及其相应的分割图的训练使用了Caffe 的随机梯度下降实现的网络。由于卷积过程中未填充,输出图像比输入图像小恒定的边界宽度。为了最小化开销并大限度地利用GPU内存,我们倾向于使用大的单个的输入切片而不是大的批处理大小,从而使用单个图像批处理。因此,我们使用高动量(0.99),使得大量先前看到的训练样本确定当前优化步骤中的更新。
    该能量函数是通过在最终特征图上结合交叉熵损失函数的像素级别的softmax来计算的。我们引入交叉熵损失函数是为了在训练中给予一些像素更重要的意义。
    我们预先计算每个地面实况分割的权重图,以补偿训练数据集中某类像素的不同频率,并迫使网络学习我们在接触细胞之间引入的小分隔边界。使用形态学处理来计算分离边界。然后,权重图计算如下公式
    在具有许多卷积层和通过网络的不同路径的深度网络中,权重的良好初始化是极其重要的。否则,网络的某些部分可能会给予过度的激活,而其他部分则根本不起作用。理想地,初始权重应当被适配成使得网络中的每个特征图具有近似单位方差。对于具有我们的架构的网络(交替卷积和ReLU层),这可以通过从标准差为2/N的高斯分布中提取初始权重来实现,其中N表示一个神经元的传入节点数。例如,对于3x 3卷积和前一层中的64个特征通道,N = 9 · 64 = 576。
  2. 数据扩充
    当只有很少的训练样本可用时,数据扩充对于教导网络期望的不变性和鲁棒性是必要的。对于显微图像,我们主要需要移位和旋转不变性以及对变形和灰度值变化的鲁棒性。特别是训练样本的随机弹性变形似乎是用非常少的注释图像训练分割网络的关键概念。我们在3 × 3的粗网格上使用随机位移向量生成平滑变形。从具有10像素标准偏差的高斯分布中对位移进行采样。然后使用双三次插值计算每像素位移。收缩路径末端的丢弃层执行进一步的隐式数据扩充。
5 结论

u-net架构在非常不同的生物医学分割应用中实现了非常好的性能。得益于弹性变形的数据扩充,它只需要很少的注释图像,并且在NVidia Titan GPU(6 GB)上有非常合理的训练时间,只有10个小时。我们提供完全基于Caffe[6]的实现和经过培训的网络4。我们确信,u-net体系结构可以很容易地应用于更多的任务。

你是否还在寻找稳定的海外服务器提供商?创新互联www.cdcxhl.cn海外机房具备T级流量清洗系统配攻击溯源,准确流量调度确保服务器高可用性,企业级服务器适合批量采购,新人活动首月15元起,快前往官网查看详情吧


本文名称:U-Net卷积神经网络在生物图像分割上的应用简单易懂笔记-创新互联
文章出自:http://mbwzsj.com/article/dgphje.html

其他资讯

让你的专属顾问为你服务